If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8v^2-16v-14=0
a = 8; b = -16; c = -14;
Δ = b2-4ac
Δ = -162-4·8·(-14)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{11}}{2*8}=\frac{16-8\sqrt{11}}{16} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{11}}{2*8}=\frac{16+8\sqrt{11}}{16} $
| 10y-11=39 | | d/3+12=18 | | 2(7x+4)=4x-6(2-x)=7 | | 6(5a+4)=144 | | 2x^2-3=-6-2 | | 26=-r-3 | | -12-2/3x=420 | | j+2j+3j+4j=100+9j | | (2x-1)^5-32=0 | | 11(n-17)=-209 | | d/6+4=12 | | 8+4x=516 | | 167=-x+122 | | -x2-3x=7 | | 2/x=10/8 | | 7-3x-x2=0 | | 9x+20=-10 | | 4g+7g+3=2g+30 | | 2c+20=200 | | (3x+1)×(X+4)=0 | | -7+p/2=6 | | 2x-38=124 | | v^2-12v-50=-6 | | 4x+2(x=6)=36 | | 83c−2=23c−12 | | 1.84g-11=0.96 | | (‑(x^3))-3*x^2+24*x+80=0 | | 5(y-1)=405(y-1)=405(y-1)=40 | | 4(5x=3)=14x+30 | | 15x=3-2x | | 216=(136)^x−1 | | (x+1)/6=48 |